The effect of high vacuum on the mechanical properties and bioactivity of collagen fibril matrices.

نویسندگان

  • Christopher R Anderton
  • Frank W DelRio
  • Kiran Bhadriraju
  • Anne L Plant
چکیده

The extracellular matrix (ECM) environment plays a critical role in organism development and disease. Surface sensitive microscopy techniques for studying the structural and chemical properties of ECMs are often performed in high vacuum (HV) environments. In this report, we examine the affect HV conditions have on the bioactivity and mechanical properties of type I collagen fibrillar matrices. We find that HV exposure has an unappreciable affect on the cell spreading response and mechanical properties of these collagen fibril matrices. Conversely, low vacuum environments cause fibrils to become mechanically rigid as indicated by force microscopy, resulting in greater cell spreading. Time-of-flight secondary ion mass spectrometry results show no noticeable spectral differences between HV-treated and dehydrated matrices. While previous reports have shown that HV can denature proteins in monolayers, these observations indicate that HV-exposure does not mechanically or biochemically alter collagen in its supramolecular configuration. These results may have implication for complex ECM matrices such as decellularized scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Low-Power Helium-Neon Laser Irradiation on Collagen Fibril Thickness of Incisized Medial Collateral Ligament of Knee in Rat

Purpose: The aim of the present study is to investigate the effect of low-power Helium-Neon laser (LPL) on collagen fibril thickness of incisized medial collateral ligament of knee joint (MCL) in rat. Materials and Methods: MCL of right hind limb of 35 male adult sprague Dawley rat under general anesthesia were transversly incisized. Rats were randomly divitded into normal, control, first lase...

متن کامل

The effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix

The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...

متن کامل

The effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix

The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...

متن کامل

Evaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method

Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biointerphases

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2013